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ABSTRACT 
 
 

he Philippines is one of the countries with a high 
number of tuberculosis (TB) cases in the world 
according to the World Health Organization (WHO). 
TB incidence in the Philippines has remained 
consistently high over the years, with an estimated 

561,000 incident TB cases in 2020. Around 18% of these cases 
were recorded among children aged 0–14 years, 72% among 
Filipinos aged 15–64 years, and the remaining 10% among older 
adults aged 65 years and above. In this work, a mathematical 
model with age groupings in the susceptible class—children, the 
working-age group, and older adults—was developed to 
describe TB transmission in the Philippines. Sensitivity analysis 
was also performed to determine the parameters that would pose 
a significant effect on the model output. Then, key parameter 
values of the model were estimated using the collected 
Philippine TB incidence data from 2005-2020. Moreover, the 
End TB strategy goal initiated by the WHO was assessed to 
determine mitigating strategies appropriate for the TB 
transmission in the Philippines Results show that transmission 
rates among susceptible children and working-age adults affect 
TB incidence more than the transmission rate among susceptible 
older adults. Furthermore, programs targeting individuals with 
latent TB infection who are more likely to develop active TB in 
the future should be strongly strengthened and prioritized. 
 
 
 

INTRODUCTION 
 
Tuberculosis (TB) is a communicable infectious disease caused 
by the bacterium Mycobacterium tuberculosis (MTB) (Chai et 
al., 2018; Koshak et al., 2022). Transmission occurs primarily 
through cough or sneeze droplets from infected individuals, with 
prolonged exposure increasing the risk of new infections 
(Okram & Singh, 2024). MTB infection can affect multiple 
organs in the body, including the lungs, brain, bones, kidneys, 
and liver (Arsyad et al., 2024; Verma et al., 2024). Following 
exposure, an individual may develop either latent or active TB 
infection (Boom et al., 2021; Salgame et al., 2015). Latent TB 
cases are infected but do not exhibit symptoms and are not able 
to transmit the disease (Oh et al., 2025; Shah & Dorman, 2021). 
In contrast, those with active TB infection display symptoms and 
are capable of spreading MTB to others (Achour & Chebbi, 
2022; Blumberg & Ernst, 2016; Lin & Flynn, 2010). Untreated 
active TB may result in severe complications or death (World 
Health Organization, 2021b). 
 
TB remains a major global health threat. According to the US 
Centers for Disease Control and Prevention, approximately two 
billion people worldwide are infected with MTB, with about 10 
million developing active TB infection annually (Centers for 
Disease Control and Prevention, 2011). In the Philippines, TB 
continues to be a significant concern—an estimated 591,000 
cases occurred in 2020, but only 268,000 were officially notified 
(Department of Health, 2020). This places the Philippines 
among the countries with persistently high TB incidence (World 
Health Organization, 2022). TB is the sixth leading cause of 
morbidity and mortality in the Philippines, with a death rate of 
28 per 100,000 as of 2020 (World Data Bank, 2020; World 
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Health Organization, 2021a). The COVID-19 pandemic has 
further strained health services, reducing treatment coverage and 
notification rates (Department of Health, 2021). Despite 
ongoing efforts by the Department of Health’s National 
Tuberculosis Control Program, there remains an unmet need for 
innovative and targeted interventions against TB. 
 
Mathematical modeling is recognized as a valuable approach for 
studying the epidemiology of infectious diseases and informing 
public health policies. Previous Philippine TB models have 
investigated transmission dynamics and intervention strategies. 
For example, Villasin et al. (2017) demonstrated that improving 
vaccine coverage alone is insufficient; instead, enhancing partial 
immunity, treatment success, treatment duration, and case 
detection is critical for reducing TB incidence and prevalence 
(Villasin et al., 2017). Kim et al. (2018) applied optimal control 
theory to determine cost-effective interventions that minimize 
high-risk latent and infectious cases (Kim et al., 2018). 
However, past studies generally treated the population as 
homogeneous and did not explore differences in TB 
transmission across age groups. 
 
Age-structured mathematical models are essential for 
understanding transmission dynamics and the mechanisms 
behind pronounced disparities in TB burden between age groups 
(Fu et al., 2020). These models enable more realistic projections 
and inform targeted interventions (Castillo-Chavez & Feng, 
1998). Countries such as Taiwan and China have developed 
continuous age-structured TB models, improving knowledge of 
the factors contributing to age-related inequalities in TB burden 
(Brooks-Pollock et al., 2010; Fu et al., 2020; Zhao et al., 2017). 
It was observed from previous works that young people in the 
Philippines may be exposed to multiple extended respiratory 
contacts per day, which may put them at risk of acquiring 
infection that can develop into TB disease (Snow et al., 2018). 
Moreover, old adolescents (15-19 years old) spend a huge 
portion of their time in either public places like schools and 
malls or mingling with their peers (Lerner & Steinberg, 2009). 
In addition, about 45.63 million Filipinos aged 15–64 years are 
currently employed, with an estimated average working time of 
40.1 hours per week (Philippine Statistics Authority, 2020). 
These observations demonstrate the importance of accounting 
for mobility and social interaction differences across age 
compartments. 
 
This study addresses the existing research gap by developing an 
age-structured mathematical model for TB transmission in the 
Philippines, calibrated to incidence data from 2005-2020. The 
model estimates key parameters, assesses sensitivity, and 
evaluates the feasibility of reaching WHO’s 2030 End TB 
Strategy goal of an 80% reduction in TB incidence (Stop TB 
Partnership, 2019; Vianzon et al., 2013). The findings offer 
evidence-based strategies to mitigate TB across different age 
groups and provide updated recommendations for reducing and 
eventually eliminating TB in the Philippines. 
 
 
METHODS 
 
Model 
The tuberculosis model in this study was adapted from the work 
of Kim et al. (2018). The entire Philippine population is divided 
into four epidemiological compartments: susceptible (𝑆), high-
risk latent (𝐸 ), infectious (𝐼 ), and low-risk latent (𝐿 ). The 
susceptible class consists of uninfected individuals who can 
become infected with TB. The high-risk latent class includes 
those infected with MTB who have a high probability of 
progressing to active TB but are not yet infectious to others. The 
infectious class contains individuals who are symptomatic and 
capable of transmitting the infection. The low-risk latent class 
includes people infected with MTB who have a low chance of 

progressing to active TB and are non-infectious; this class also 
incorporates individuals who have recovered from the disease 
but in whom the bacteria persist asymptomatically (Kim et al., 
2018). 
 
To analyze age-specific transmission dynamics, the susceptible 
class is further stratified into three age groups—children (0–14 
years, 𝑆! ), working group (15–64 years, 𝑆" ) (Philippine 
Statistics Authority, n.d.), and older adults (65 years and above, 
𝑆#). The model assumptions include a birth rate (𝑏) contributing 
to the susceptible population and a uniform natural death rate (𝜇) 
applied across all compartments. Transmission rates (𝛽!, 𝛽", 𝛽#) 
vary by age group to reflect differential contact patterns among 
children, working-age adults, and older adults. Movement from 
children to working group and from working group to old adults 
occurs at rates (𝑚!) and (𝑚"), respectively. Active TB leads to 
TB-induced mortality at rate (𝑑$) within the infectious class. 
Treatment is administered at rate (𝑟) with a failure rate (𝑝). 
Individuals move from the high-risk latent to the low-risk latent 
class at rate (𝛼), and from the high-risk latent to the infectious 
class at rate (𝜅). 
 
The model assumes no migration, which is reasonable over the 
medium term in the Philippine context. Homogeneity is assumed 
within compartments and age groups, thus considering identical 
risk and behavior in members of the same group. Given the 
reported differences in social behavior of individuals belonging 
to various age groups in the Philippines (Philippine Statistics 
Authority, 2020; Snow et al., 2018), stratifying transmission by 
age is biologically plausible. Further dividing the latent 
compartment to high- and low-risk classes aligns with clinical 
evidence on progression and infectiousness differences (Oh et 
al., 2025; Shah & Dorman, 2021). The imperfect nature of TB 
treatment, which may render infected individuals asymptomatic 
but not eradicate bacteria, is also incorporated (Rangaka et al., 
2015). 
 
Despite its strengths, the model has limitations. It does not 
account for heterogeneity arising from strain variations (Sinha 
& Rahul, 2023), HIV co-infection (Gao et al., 2024), 
socioeconomic factors (Cioboata et al., 2025), or migration 
patterns (Tavares et al., 2017) that can impact TB dynamics. The 
natural death rate is held constant across compartments and age 
groups, which could oversimplify demographic variability. 
Treatment failure may depend on adherence and drug resistance 
but is modeled with a constant rate (Alinaitwe et al., 2025). 
Aging transitions between groups are also assumed to be fixed. 
Parameter values were estimated using Philippine TB incidence 
and demographic data from 2005 to 2020, ensuring relevance to 
the local context. Literature-sourced or assumed parameters 
introduce uncertainty, but sensitivity analyses identify which 
parameters most influence model outcomes, guiding confidence 
in projections. 
 

 
Figure 1: Flow diagram of TB dynamics with age groups. Six classes 
were considered namely: the susceptible children (𝑺𝟏); the susceptible 
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working class (𝑺𝟐); the susceptible old adults (𝑺𝟑); the high-risk latent 
TB class (𝑬); the TB-infected individuals with symptoms (𝑰); and the 
low-risk latent class (𝑳). The arrows show the flow of individuals from 
one compartment to another. 

The compartmental diagram shown in Figure 1 provides a visual 
representation of the age-structured tuberculosis (TB) 
transmission model discussed earlier. The TB transmission in 
the Philippines is then governed by the system of differential 
equations as shown in Equation 1. 
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where 𝑁 denotes the total population of the Philippines. This 
pertains to all the persons present in the system at time 𝑡 i.e. 𝑁 =
𝑆! + 𝑆" + 𝑆# + 𝐸 + 𝐼 + 𝐿. 
 
Data Collection 
The World Health Organization has a dedicated Global 
Tuberculosis Report website, where updates about the annual 
TB situation worldwide are reported in this website (World 
Health Organization, 2022). On the other hand, the World Data 
Bank also stores information regarding global health and 
population statistics, including the Philippines (World Data 
Bank, 2020). The data on the life expectancy at birth, the 
Philippine TB incidence, the TB-induced mortality rate (per 
100,000 people), and the treatment success rate per year from 
2005 to 2020 were obtained from these databases. 
 
In addition to the data mentioned above, data on the Philippine 
population are also necessary for parameter estimation and data 
fitting. The Philippine population for each age group, as well as 
the total population from 2005 to 2020, are obtained from the 
World Data Bank (World Data Bank, 2020). 
 
Estimation of Natural Death Rate (𝝁) and Birth Rate (𝒃) 
In the computation of the natural death rate (𝜇), the median age 
of the population and the life expectancy at birth were used. The 
average life expectancy from 2005 to 2020 was computed, and 
the median age of the population was subtracted from this 
average. The natural death rate was estimated to be the inverse 
of the obtained difference which has a value of 𝜇 = 0.0225. The 
annual birth rate was estimated by minimizing the sum of 
squared errors between the observed total population and the 
model solution %&

%'
= (𝑏 − 𝜇)𝑁  using the MATLAB function 

lsqcurvefit. The total Philippine population from 2005 − 2020 
was used as an input data for the lsqcurvefit solver. The annual 
birth rate was estimated to be 𝑏 = 0.0389. Figure 2 shows the 
actual and the estimated Philippine population from 2005 to 
2020. 
 

 
Figure 2: Philippine population and estimated population from 2005 
to 2020. The red squares and the black line represent the actual 
population data and the fitted curve, respectively. An increasing linear 
trend can be observed in the population from 2005 to 2020. 

Estimation of TB-induced Mortality Rate (𝒅𝑻)  and 
Probability of Failed Treatment (𝒑) 
The value of 𝑑$ was estimated by getting the average number of 
Philippine TB-mortality per year from 2005 to 2020. From the 
data, the TB-induced mortality rate (𝑑$) was estimated to be 
0.0532 . While the probability of failed treatment (𝑝)  was 
calculated by getting the difference between 1 and the average 
treatment success rate from 2005 to 2020. The obtained value 
for 𝑝 is 0.1180. 
 
Estimation of Conversion Rates (𝒎𝟏 and 𝒎𝟐) 
The conversion rates refer to the rates at which people move 
from one susceptible age group to another. These values were 
estimated using the system of differential equations in equation 
2 which reflects the change in population in each group without 
considering the number of infected people. 
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𝑑𝑆#
𝑑𝑡 = 𝑚"𝑆" − 𝜇𝑆#

																	(2) 

 
Together with the data on Philippine population from 2005 to 
2020 of the three groups, i.e., 0 − 14 years old, 15 − 64 years 
old, and 65 years old and above, the values of the parameters 
𝑚!  and 𝑚"  were estimated using the nonlinear Least-Square 
method, or the lsqcurvefit from MATLAB. Figure 3 shows the 
data fitting for the said parameters. The estimated parameter 
values were 𝑚! = 0.0906 and 𝑚" = 0.0046. 
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Figure 3: Actual population and estimated population by age groups 
from 2005 to 2020. The purple, green, and blue squares represent the 
actual Philippine population of groups 𝟎 − 𝟏𝟒  years old, 𝟏𝟓 − 𝟔𝟒 
years old, and 𝟔𝟓 years old and above, respectively. Similarly, the 
purple, green, and blue curves represent the fitted curve for groups 
𝟎 − 𝟏𝟒 years old, 𝟏𝟓 − 𝟔𝟒 years old, and 𝟔𝟓 years old and above, 
respectively. 

Sensitivity Analysis 
Sensitivity analysis is the study of how levels of uncertainty in 
the model input might be attributed to different sources of 
uncertainty in the model output (Saltelli, 2002). Also, it is 
frequently used to quantify the effect of each parameter on the 
model outcomes (Hoops et al., 2016). One method for sensitivity 
analysis is Latin Hypercube Sampling combined with Partial 
Rank Correlation Coefficient (LHS/PRCC), which was used in 
this study. It is a method used to examine the complete 
parameter space of a model in the shortest possible amount of 
computer simulations (Blower et al., 1991). 
 
The PRCC values of each parameter were obtained using the 
Latin Hypercube Sampling (LHS). In LHS, each model 
parameter was assigned a uniform distribution and sampling was 
done independently. A total of 10,000 simulations were 
conducted, each with a different set of parameter values chosen 
from a uniform distribution. To investigate how changes in the 
parameter affect the model output, time points of interest are 
identified. As a result, the PRCCs of the model output at specific 
instances are calculated for each parameter. The model output 
shows the effect of each parameter to the infectious class, 𝐼, with 
16 time points representing the range of year considered in the 
study. The PRCC values of each parameter are presented in 
Figure 4. 
 

 
Figure 4: PRCC values that depict the sensitivities of the model output 
𝑰 with respect to the parameters. Parameters 𝒃, 𝜷𝟏, 𝜷𝟐, 𝝁, 𝜶, 𝜿, 𝒓, and 
𝒅𝑻 have significant effect on the model output. 

PRCC values range from −1 to +1, and parameters with PRCC 
values less than −0.5  or higher than 0.5  indicate stronger 
relationship with the model output (Taylor, 1990). Parameters 
such as the birth rate (𝑏), transmission rates of children and 
working groups (𝛽!, 𝛽"), and the high-risk-latent-to-infectious 
conversion rate (𝜅) exhibit high positive PRCC values. A one-
unit increase in any of these parameters leads to a corresponding 
rise in the total number of infectious individuals in the 
population. In contrast, parameters like the natural mortality rate 
(𝜇), progression rate from high-risk latent to low-risk latent class 
(𝛼), treatment rate (𝑟), and TB-induced mortality (𝑑$) have high 
negative PRCC values, indicating that increases in these 
parameters cause a decrease in the number of infectious 
individuals. 
 
Parameter Identification 
Parameter estimation enables the model to quantitatively reflect 
the disease dynamics observed in a specific setting. In this study, 
the model parameters were identified by calibrating the model 
with the national TB incidence data reported by the Department 
of Health from 2005 to 2020. No additional adjustment was 
made to the dataset. 
 
Fitting was performed by minimizing the sum of squared errors 
between the observed annual TB incidence and the model-
predicted incidence, as implemented using the MATLAB 
routine fminsearch. The model output matched to the observed 
data was the annual number of individuals progressing from 
high-risk latent TB (𝐸) to infectious TB (𝐼), calculated as the 
product of the progression rate 𝜅  and the high-risk latent 
population size at each time point. 
 
The parameters calibrated through fitting included the 
transmission rates for children (𝛽!) and working group (𝛽"), 
progression rate to active TB (𝜅), and treatment rate (𝑟). Bounds 
for each parameter were set based on biologically plausible 
ranges informed by both literature and national demographic 
statistics. Initial guesses for the parameters were based on a 
previous modeling study (Kim et al., 2018). Parameters not 
fitted from data (e.g., transition rates 𝑚!, 𝑚" and natural death 
rate 𝜇) were estimated from population statistics or obtained 
from published prior TB modeling study (Kim et al., 2018). 
 
For initial conditions, the susceptible population sizes for each 
age group (𝑆!, 𝑆", 𝑆#) were set to their respective demographics 
as reported in the 2005 census data. From the study conducted 
by Lara and Ocampo, it was determined that about 67% of the 
Philippine population have latent TB infection (Lara & Ocampo, 
2013). The percentage of population with high-risk latent TB 
and low-risk latent TB were set to 9.5% and 57.5%, respectively. 
The initial value of the Infectious (𝐼) class was assigned based 
on the first available incidence data point. 
 
The estimates for 𝛽! and 𝛽" are slightly higher compared to the 
values estimated in previous TB modeling studies in the country 
for all age groups (Kim et al., 2018; Villasin et al., 2017) 
reflecting the higher transmission rates in the children and 
working class. Progression rate from high-risk latent to 
infectious class (𝜅) is higher compared to the estimated value 
reported in (Kim et al., 2018). This is attributed to the higher 
estimates of the incidence of TB used in the current study. The 
treatment rate is close to the reported value of 63% in 2018 for 
the Philippines (AIDS Data Hub, 2019). Figure 5 illustrates the 
fit of the calibrated model incidence output (black curve) to the 
reported TB incidence data (red squares), while Table 1 
summarizes the estimated and referenced parameters used in 
simulations. 
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Figure 5: The identified model (black curve) and TB incidence data 
(red square). Generally, an increasing trend is evident in the 
Philippines TB incidence. 

Table 1: The estimated and data fitted parameter values used in simulations 
Parameters Description Value Reference 

b Annual birth rate 0.0389 Data fitted* 
𝜇 Natural death rate 0.0225 Estimated 
𝛽! Transmission rate of children group 12.9201 Data fitted** 
𝛽" Transmission rate of working group 12.8587 Data fitted** 
𝑚! Conversion rate from children to working group 0.0906 Data fitted* 
𝑚" Conversion rate from working to older adults 0.0046 Data fitted* 
𝜅 Progression rate from high-risk latent to infectious class 0.0569 Data fitted** 
𝑟 Treatment rate 0.6590 Data fitted** 
𝑑$ TB-induced mortality rate 0.0532 Estimated 
𝑝 Probability of failed treatment 0.1180 Estimated 
𝛽# Transmission rate of older adults 11.7345 (Kim et al., 2018) 
𝛼 Progression rate from high-risk latent to low-risk latent class 0.2077 (Kim et al., 2018) 

*Estimated from data on Philippine Population 
**Estimated from data on TB Incidence 

WHO’s END TB Strategy Goal 
There have been various efforts exerted by different health 
institutions to combat the problem of TB burden in the 
Philippines. Despite these efforts, the incidence rate of TB in the 
Philippines remains high (World Data Bank, 2020). The Sixty-
Seventh World Health Assembly endorsed the End TB Strategy 
developed by WHO (World Health Organization, n.d.). The 
organization set a target of an 80% decrease in TB incidence 
globally by 2030 compared with the number of new TB cases 
recorded in 2015, which then aims toward ending the TB 
epidemic. The TB incidence in the Philippines in 2015 was 
561,623, so the End TB Strategy goal is to reduce TB incidence 
to at most 112,325  by 2030. So, to assess the feasibility of 
reaching the End TB strategy goal of the WHO and determine 
the best strategy to achieve this target, the researchers 
considered three mitigating strategies currently implemented by 
the health institutions of the Philippines. These are also the 
strategies mentioned in one of the TB paper focused in the 
Philippines (Kim et al., 2018). 
 
The first strategy is the distancing strategy, which represents all 
efforts to reduce close contact between susceptible individuals 
and those with TB. In the model, this is implemented by 
decreasing the value of the transmission rate (𝛽!), (𝛽"), and (𝛽#). 
Note that in this paper, we can explore the effects of applying 
the distancing strategy to different age groups. Another strategy 
is the latent case finding intervention, which encompasses 
efforts to prevent high-risk latent TB infections from 

progressing to active disease. This includes chemoprophylaxis 
treatment, screening of individuals who have high risk of getting 
the disease, and other kinds of latent TB treatment. In the model, 
this strategy was demonstrated by increasing (𝛼). Lastly, the 
active case finding strategy refers to efforts that increase the 
number of individuals who seek and receive TB treatment. This 
was implemented by increasing (𝑟) in the simulations. In the 
study, several scenarios were considered in attempting to reach 
the WHO’s End Strategy goal. It was assumed that the 
improvement in the said strategies would be implemented in 
2023, and at a constant rate until 2030. First, we varied a single 
parameter to explore the effect of each strategy. Then, two 
strategies were implemented by simultaneously varying two 
parameter values. We also explored the effects of implementing 
at least three strategies. 
 
 
RESULTS 
 
Using the obtained parameter and initial values, the model was 
simulated over the time span 2005 to 2030. Based on the 
simulation, TB incidence is projected to reach approximately 
676,582, which is about 200,000 higher than the incidence in 
2005. This increase implies that there is a need for a more 
extensive planning and effort to address the TB burden problem 
in the Philippines. In the next parts of this paper, different 
strategies to mitigate the disease will be assessed by varying 
different parameter values. 
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Variation of a Single Parameter Value 
Varying each of the parameters (𝛽!), (𝛽"), (𝛽#), (𝛼), and (𝑟) by 
10%− 30% will not result in the achievement of the End TB 
strategy goal. Nonetheless, reducing (𝛽!)  and (𝛽")  by 30% 
would cause around 19% and 13% decrease respectively in the 
number of TB incidence while increasing (𝑟) by 30% would 
result to a decrease of 20% compared to the 2030 projection 
when no improvement in the current efforts is done. However, 
when compared to the 2015 incidence data, an estimated 
decrease of only 2% and 4% is observed when 30% decrease in 

(𝛽!) is set and 30% increase in 𝑟 is implemented. Decreasing 
(𝛽#) by 10%− 30%, as shown in Figure 6c, resulted to almost 
no change in the TB incidence. It is important to note that 
varying the value of (𝛼) has the capability to strongly decrease 
the number of TB incidence in the Philippines at around 26% 
compared to the 2030 projection and 10% compared to 2015 
data. As reduction in all scenarios is not sufficient, multiple 
control strategies were also explored. 
 

 
(a) Varying 𝛽% (b) Varying 𝛽& 

 
(c) Varying 𝛽' (d) Varying 𝛼 

 
Figure 6: The estimated TB incidence when single parameter is varied. Decrease in the incidence is evident when 𝜷𝟏, 𝜷𝟐, 𝜶, and 𝒓 are varied (6a, 6b, 
6d, 6e). No significant change in the TB incidence when 𝜷𝟑 is varied up to 𝟑𝟎% (6c).

  

(e) Varying 𝑟 
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Simultaneous Variation of at Least Two Parameter Values 
The parameter 𝛽#  was no longer considered in subsequent 
simulations as the previous section showed that changes in the 
value of this parameter do not significantly affect the incidence 
of TB in the country. Starting with a combination of two 
strategies, the distancing strategy for the children group and the 
working class were each paired with the other strategies (see 

Figure 7). For both cases, the distancing strategy together with 
the latent case finding strategy achieved the lowest incidence by 
2030 and resulted in a 28%  and 23%  lower incidences, 
respectively, compared to the 2015 incidence. 
 

 

Figure 7: The estimated TB incidence when two parameters are simultaneously changed. Distancing strategy together with latent case finding strategy 
achieved the lowest incidence by 2030 for both cases

Now, three parameter values were combined to examine their 
overall effect on the TB incidence in the Philippines. Here, 𝛽! 
and 𝛽"  are lowered by 30%  while 𝛼  and 𝑟  are increased by 
30%  (see Figure 8). The TB incidence in 2030 will be 
significantly reduced for each combination. However, the 

combinations for which 𝛼  is present displayed the lowest 
incidences by 2030. 
 

 
Figure 8: Simultaneously changing three parameter values. Combinations for which 𝜶 is present displayed the lowest incidences by 2030.

Simulations involving four parameter values were also explored 
(see Figure 9). Even with 30% decrease in 𝛽! and 𝛽" together 
with a 30% increase in 𝛼 and 𝑟, the projected incidence by 2030 
is still far from the WHO goal. In fact, at least 50% decrease in 
𝛽!  and 𝛽" , together with 50%  and 30%  increase on 𝛼  and 𝑟 

respectively, must be fulfilled to achieve the goal by 2030. 
Nonetheless, improving each strategy by 30% will lower the 
incidence by almost 53% compared to the incidence in 2015. 
 

 
Figure 9: The estimated TB incidence when all parameters are changed simultaneously. At least 𝟓𝟎% decrease in 𝜷𝟏 and 𝜷𝟐, together with 𝟓𝟎% and 
𝟑𝟎% increase on 𝜶 and 𝒓 respectively, must be fulfilled to achieve the goal by 2030.

𝛽% with other parameters 𝛽& with other parameters 



                  SciEnggJ       Vol. 18 (Supplement) | 2025 490 

DISCUSSION 
 
Variation of a Single Parameter Value 
Varying (𝛽!), (𝛽"), (𝛼), and (𝑟) each by 10%− 30% resulted 
in significant but insufficient reductions in infections, implying 
that minimal efforts to reduce transmission in people aged 0 −
14 or 15 − 64 years old or treating more individuals infected 
with TB alone will not be enough to reduce the number of TB 
incidence by 80% in 2030. However, these control strategies are 
significant in curtailing TB in the Philippines. 
 
Decreasing 𝛽# by 10%− 30% resulted in almost no change in 
the incidence of TB. This complements the result of the 
sensitivity analysis, which showed that 𝛽#  has no significant 
effect on the model output. Consequently, reducing TB 
transmission in people aged 65 years and older will not have a 
large impact on lowering overall TB incidence in the model. 
However, it is still necessary to pay attention to lowering 
transmission in this age group. This is because once people in 
this group become infected with MTB, treatment can be 
complicated due to current health complications, immune 
senescence, and other health factors in this age group. In 
addition, older people tend to show unusual symptoms of TB, 
leading to delayed diagnosis and treatment resulting in higher 
morbidity and mortality (Thomas & Rajagopalan, 2001). 
 
Simultaneous Variation of at Least Two Parameter Values 
The impact of the latent case finding strategy that was explored 
by varying 𝛼 was dominant compared to the active case finding 
strategy in terms of reducing the TB incidence. The significance 
of this strategy is still evident in the scenario where three control 
strategies are improved. The efforts to assist high-risk latent TB 
individuals must then be improved to effectively mitigate TB in 
the country. The results displayed a large change in 𝛽!, 𝛽", 𝛼, 
and 𝑟 is required to attain the goal by 2030. This implies that 
intensive improvement of all efforts related to distancing 
strategy for children and the working group, latent case finding 
intervention, and active case finding strategy are necessary. This 
will be challenging in a situation where there are limited 
resources. However, enhancing all the mentioned strategies by 
30% will result in significant reductions in the incidence of 
tuberculosis in the country. 
 
Comparison with Similar Studies Across the Asia-Pacific 
Region 
While the model developed in this study introduces age-
structuring in TB transmission, it is important to acknowledge 
that the national TB incidence datasets used were highly 
aggregated and not age-specific. As a result, direct fitting and 
validation of each age group in the model is limited by data 
availability. To address this and to substantiate the conclusions 
drawn from the model, we compared our simulation results with 
findings from recent mathematical modeling studies in high-
burden and neighboring regions. 
 
Notably, our model’s identification of the working-age group as 
one of the primary drivers of transmission aligns with recent 
findings from the Republic of Korea. Seong et al. 
(2025) demonstrated that targeting Latent TB Infection (LTBI) 
treatment specifically in adults aged 35–64 resulted in the most 
effective reduction of disease burden, reinforcing our finding 
that interventions focused on the economically active population 
result in significant benefits. This also strengthens the claim of 
the importance of latent case finding strategy as suggested in the 
current study. Similarly, in the context of Indonesia, Fatmawati 
et al. (2020) utilized a discrete age-structured model to derive 
optimal control strategies, highlighting that distinct 
interventions for child and adult populations are necessary to 
maximize the reduction of latent and active cases. This supports 
our modelling framework, particularly the stratification of the 
susceptible class into these age groups. 

 
Comparisons with studies from China reveal both consistencies 
and context-specific differences. Xue et al. (2022) found that 
improved vaccination and diagnostic strategies were most 
effective when targeting young adults (20–24 years) and the 
elderly (over 65 years). While this partially aligns with our 
emphasis on young/working-age adults, our results suggest a 
lower relative contribution from the elderly compared to the 
working-age group in the Philippines, whereas Xue et al. 
emphasize the elderly as a critical target in China’s aging 
demographic. 
 
 
CONCLUSION AND RECOMMENDATIONS 
 
The results of this study underscore the significant impact of age 
on the dynamics of TB transmission in the Philippines. Certain 
age ranges, such as children and working groups, are 
disproportionately prone to TB infection due to factors including 
frequency of social contact. To reflect these differences, age 
compartments were integrated into a mathematical model 
adapted from the established work of Kim et al. (2018), 
calibrated using Philippine national TB data. 
 
Sensitivity analyses revealed that TB incidence in the 
Philippines is highly sensitive to transmission rates among 
children and the working-age group, whereas transmission 
among older adults contributes relatively less. This age-stratified 
approach demonstrates that uniform intervention strategies may 
neglect key population dynamics, and that targeted efforts for 
children and working group yield greater impact in reducing TB 
transmission. 
 
Notably, model-based feasibility assessments of the WHO’s End 
TB Strategy target, an 80% incidence reduction by 2030, 
showed that focusing solely on singular parameter 
improvements may be insufficient to reach the goal. However, 
substantial reductions were observed when increasing the 
progression rate from high-risk latent to low-risk latent class (𝛼), 
highlighting the necessity of intensified identification and 
management of latent TB cases most likely to progress to active 
disease. Integrated strategies that combine latent TB 
identification and treatment with improved social distancing 
efforts in child and working group should be prioritized to 
reduce TB incidence in the country. 
 
A principal limitation of this study lies in the dependence of 
numerical simulations on reported TB incidence data, which are 
subject to under-reporting and case notification inaccuracies in 
the Philippines (Garfin et al., 2013; Parpieva et al., 2021). 
Recent surveys indicate the true prevalence of TB is 
approximately three times higher than the number of notified 
cases, with even larger discrepancies observed in pediatric and 
adolescent age groups (Seddon et al., 2018). Such 
underestimation may result in systematic bias in parameter 
estimation. Consequently, the simulated projections may 
underestimate the overall TB burden. While sensitivity analyses 
were used to evaluate the robustness of model outputs to 
parameter variations, it is important to interpret the results with 
caution because inaccuracies in TB case notifications may affect 
the model’s ability to produce accurate projections. Enhanced 
surveillance data and improved uncertainty measurements are 
required for future modeling works to better inform health 
policy. 
 
Biological system modeling is a powerful tool for public health 
research, particularly in incorporating complex epidemiological 
concepts and enabling assessment of different interventions. 
However, several limitations exist specific to modeling TB in 
the Philippines. The current modeling framework does not 
account for migration, HIV-TB co-infection or socioeconomic 
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determinants that may impact TB transmission dynamics. 
Additionally, the assumption of population homogeneity within 
age groups and states may ignore important individual-level 
patterns. Acknowledging these limitations is essential for 
contextualizing the results from the study. 
 
For future studies, we recommend investigating TB transmission 
in the Philippines using models with age stratification in the 
high-risk latent and infectious classes, or in combinations of 
different compartments, to further analyze how age affects TB 
transmission. Future researchers may also explore using 
different (or more) age groups in studying the transmission of 
TB in the Philippines. 
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