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ABSTRACT

he Philippines is one of the countries with a high

number of tuberculosis (TB) cases in the world

according to the World Health Organization (WHO).

TB incidence in the Philippines has remained

consistently high over the years, with an estimated
561,000 incident TB cases in 2020. Around 18% of these cases
were recorded among children aged 0-14 years, 72% among
Filipinos aged 1564 years, and the remaining 10% among older
adults aged 65 years and above. In this work, a mathematical
model with age groupings in the susceptible class—children, the
working-age group, and older adults—was developed to
describe TB transmission in the Philippines. Sensitivity analysis
was also performed to determine the parameters that would pose
a significant effect on the model output. Then, key parameter
values of the model were estimated using the collected
Philippine TB incidence data from 2005-2020. Moreover, the
End TB strategy goal initiated by the WHO was assessed to
determine mitigating strategies appropriate for the TB
transmission in the Philippines Results show that transmission
rates among susceptible children and working-age adults affect
TB incidence more than the transmission rate among susceptible
older adults. Furthermore, programs targeting individuals with
latent TB infection who are more likely to develop active TB in
the future should be strongly strengthened and prioritized.
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INTRODUCTION

Tuberculosis (TB) is a communicable infectious disease caused
by the bacterium Mycobacterium tuberculosis (MTB) (Chai et
al., 2018; Koshak et al., 2022). Transmission occurs primarily
through cough or sneeze droplets from infected individuals, with
prolonged exposure increasing the risk of new infections
(Okram & Singh, 2024). MTB infection can affect multiple
organs in the body, including the lungs, brain, bones, kidneys,
and liver (Arsyad et al., 2024; Verma et al., 2024). Following
exposure, an individual may develop either latent or active TB
infection (Boom et al., 2021; Salgame et al., 2015). Latent TB
cases are infected but do not exhibit symptoms and are not able
to transmit the disease (Oh et al., 2025; Shah & Dorman, 2021).
In contrast, those with active TB infection display symptoms and
are capable of spreading MTB to others (Achour & Chebbi,
2022; Blumberg & Ernst, 2016; Lin & Flynn, 2010). Untreated
active TB may result in severe complications or death (World
Health Organization, 2021b).

TB remains a major global health threat. According to the US
Centers for Disease Control and Prevention, approximately two
billion people worldwide are infected with MTB, with about 10
million developing active TB infection annually (Centers for
Disease Control and Prevention, 2011). In the Philippines, TB
continues to be a significant concern—an estimated 591,000
cases occurred in 2020, but only 268,000 were officially notified
(Department of Health, 2020). This places the Philippines
among the countries with persistently high TB incidence (World
Health Organization, 2022). TB is the sixth leading cause of
morbidity and mortality in the Philippines, with a death rate of
28 per 100,000 as of 2020 (World Data Bank, 2020; World
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Health Organization, 2021a). The COVID-19 pandemic has
further strained health services, reducing treatment coverage and
notification rates (Department of Health, 2021). Despite
ongoing efforts by the Department of Health’s National
Tuberculosis Control Program, there remains an unmet need for
innovative and targeted interventions against TB.

Mathematical modeling is recognized as a valuable approach for
studying the epidemiology of infectious diseases and informing
public health policies. Previous Philippine TB models have
investigated transmission dynamics and intervention strategies.
For example, Villasin et al. (2017) demonstrated that improving
vaccine coverage alone is insufficient; instead, enhancing partial
immunity, treatment success, treatment duration, and case
detection is critical for reducing TB incidence and prevalence
(Villasin et al., 2017). Kim et al. (2018) applied optimal control
theory to determine cost-effective interventions that minimize
high-risk latent and infectious cases (Kim et al., 2018).
However, past studies generally treated the population as
homogeneous and did not explore differences in TB
transmission across age groups.

Age-structured mathematical models are essential for
understanding transmission dynamics and the mechanisms
behind pronounced disparities in TB burden between age groups
(Fu et al., 2020). These models enable more realistic projections
and inform targeted interventions (Castillo-Chavez & Feng,
1998). Countries such as Taiwan and China have developed
continuous age-structured TB models, improving knowledge of
the factors contributing to age-related inequalities in TB burden
(Brooks-Pollock et al., 2010; Fu et al., 2020; Zhao et al., 2017).
It was observed from previous works that young people in the
Philippines may be exposed to multiple extended respiratory
contacts per day, which may put them at risk of acquiring
infection that can develop into TB disease (Snow et al., 2018).
Moreover, old adolescents (15-19 years old) spend a huge
portion of their time in either public places like schools and
malls or mingling with their peers (Lerner & Steinberg, 2009).
In addition, about 45.63 million Filipinos aged 15-64 years are
currently employed, with an estimated average working time of
40.1 hours per week (Philippine Statistics Authority, 2020).
These observations demonstrate the importance of accounting
for mobility and social interaction differences across age
compartments.

This study addresses the existing research gap by developing an
age-structured mathematical model for TB transmission in the
Philippines, calibrated to incidence data from 2005-2020. The
model estimates key parameters, assesses sensitivity, and
evaluates the feasibility of reaching WHO’s 2030 End TB
Strategy goal of an 80% reduction in TB incidence (Stop TB
Partnership, 2019; Vianzon et al., 2013). The findings offer
evidence-based strategies to mitigate TB across different age
groups and provide updated recommendations for reducing and
eventually eliminating TB in the Philippines.

METHODS

Model

The tuberculosis model in this study was adapted from the work
of Kim et al. (2018). The entire Philippine population is divided
into four epidemiological compartments: susceptible (S), high-
risk latent (E'), infectious (I), and low-risk latent (L). The
susceptible class consists of uninfected individuals who can
become infected with TB. The high-risk latent class includes
those infected with MTB who have a high probability of
progressing to active TB but are not yet infectious to others. The
infectious class contains individuals who are symptomatic and
capable of transmitting the infection. The low-risk latent class
includes people infected with MTB who have a low chance of

progressing to active TB and are non-infectious; this class also
incorporates individuals who have recovered from the disease
but in whom the bacteria persist asymptomatically (Kim et al.,
2018).

To analyze age-specific transmission dynamics, the susceptible
class is further stratified into three age groups—children (0-14
years, S; ), working group (15-64 years, S, ) (Philippine
Statistics Authority, n.d.), and older adults (65 years and above,
S3). The model assumptions include a birth rate (b) contributing
to the susceptible population and a uniform natural death rate (1)
applied across all compartments. Transmission rates (B4, 82, 83)
vary by age group to reflect differential contact patterns among
children, working-age adults, and older adults. Movement from
children to working group and from working group to old adults
occurs at rates (m;) and (m,), respectively. Active TB leads to
TB-induced mortality at rate (dr) within the infectious class.
Treatment is administered at rate (r) with a failure rate (p).
Individuals move from the high-risk latent to the low-risk latent
class at rate (), and from the high-risk latent to the infectious
class at rate (k).

The model assumes no migration, which is reasonable over the
medium term in the Philippine context. Homogeneity is assumed
within compartments and age groups, thus considering identical
risk and behavior in members of the same group. Given the
reported differences in social behavior of individuals belonging
to various age groups in the Philippines (Philippine Statistics
Authority, 2020; Snow et al., 2018), stratifying transmission by
age is Dbiologically plausible. Further dividing the latent
compartment to high- and low-risk classes aligns with clinical
evidence on progression and infectiousness differences (Oh et
al., 2025; Shah & Dorman, 2021). The imperfect nature of TB
treatment, which may render infected individuals asymptomatic
but not eradicate bacteria, is also incorporated (Rangaka et al.,
2015).

Despite its strengths, the model has limitations. It does not
account for heterogeneity arising from strain variations (Sinha
& Rahul, 2023), HIV co-infection (Gao et al., 2024),
socioeconomic factors (Cioboata et al., 2025), or migration
patterns (Tavares et al., 2017) that can impact TB dynamics. The
natural death rate is held constant across compartments and age
groups, which could oversimplify demographic variability.
Treatment failure may depend on adherence and drug resistance
but is modeled with a constant rate (Alinaitwe et al., 2025).
Aging transitions between groups are also assumed to be fixed.
Parameter values were estimated using Philippine TB incidence
and demographic data from 2005 to 2020, ensuring relevance to
the local context. Literature-sourced or assumed parameters
introduce uncertainty, but sensitivity analyses identify which
parameters most influence model outcomes, guiding confidence
in projections.

bN

Figure 1: Flow diagram of TB dynamics with age groups. Six classes
were considered namely: the susceptible children (S;); the susceptible
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working class (S;); the susceptible old adults (S3); the high-risk latent
TB class (E); the TB-infected individuals with symptoms (I); and the
low-risk latent class (L). The arrows show the flow of individuals from
one compartment to another.

The compartmental diagram shown in Figure 1 provides a visual
representation of the age-structured tuberculosis (TB)
transmission model discussed earlier. The TB transmission in
the Philippines is then governed by the system of differential
equations as shown in Equation 1.
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where N denotes the total population of the Philippines. This
pertains to all the persons present in the system at time t i.e. N =
S1+S;+S3+E+1+1L.

Data Collection

The World Health Organization has a dedicated Global
Tuberculosis Report website, where updates about the annual
TB situation worldwide are reported in this website (World
Health Organization, 2022). On the other hand, the World Data
Bank also stores information regarding global health and
population statistics, including the Philippines (World Data
Bank, 2020). The data on the life expectancy at birth, the
Philippine TB incidence, the TB-induced mortality rate (per
100,000 people), and the treatment success rate per year from
2005 to 2020 were obtained from these databases.

In addition to the data mentioned above, data on the Philippine
population are also necessary for parameter estimation and data
fitting. The Philippine population for each age group, as well as
the total population from 2005 to 2020, are obtained from the
World Data Bank (World Data Bank, 2020).

Estimation of Natural Death Rate () and Birth Rate (b)

In the computation of the natural death rate (@), the median age
of the population and the life expectancy at birth were used. The
average life expectancy from 2005 to 2020 was computed, and
the median age of the population was subtracted from this
average. The natural death rate was estimated to be the inverse
of the obtained difference which has a value of u = 0.0225. The
annual birth rate was estimated by minimizing the sum of
squared errors between the observed total population and the

model solution ‘;—IZ = (b — w)N using the MATLAB function

Isqcurvefit. The total Philippine population from 2005 — 2020
was used as an input data for the Isgcurvefit solver. The annual
birth rate was estimated to be b = 0.0389. Figure 2 shows the
actual and the estimated Philippine population from 2005 to
2020.
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Figure 2: Philippine population and estimated population from 2005
to 2020. The red squares and the black line represent the actual
population data and the fitted curve, respectively. An increasing linear
trend can be observed in the population from 2005 to 2020.

Estimation of TB-induced Mortality Rate (dy) and
Probability of Failed Treatment (p)

The value of d was estimated by getting the average number of
Philippine TB-mortality per year from 2005 to 2020. From the
data, the TB-induced mortality rate (dr) was estimated to be
0.0532. While the probability of failed treatment (p) was
calculated by getting the difference between 1 and the average
treatment success rate from 2005 to 2020. The obtained value
for p is 0.1180.

Estimation of Conversion Rates (i, and m,)

The conversion rates refer to the rates at which people move
from one susceptible age group to another. These values were
estimated using the system of differential equations in equation
2 which reflects the change in population in each group without
considering the number of infected people.

ar bN — (my + w)S;

ds

d_tz =myS; — (my + WS, )
ds;

dt =Mm,S; — US3

Together with the data on Philippine population from 2005 to
2020 of the three groups, i.e., 0 — 14 years old, 15 — 64 years
old, and 65 years old and above, the values of the parameters
m, and m, were estimated using the nonlinear Least-Square
method, or the Isqcurvefit from MATLAB. Figure 3 shows the
data fitting for the said parameters. The estimated parameter
values were m; = 0.0906 and m, = 0.0046.
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Figure 3: Actual population and estimated population by age groups
from 2005 to 2020. The purple, green, and blue squares represent the
actual Philippine population of groups 0 — 14 years old, 15 — 64
years old, and 65 years old and above, respectively. Similarly, the
purple, green, and blue curves represent the fitted curve for groups
0 — 14 years old, 15 — 64 years old, and 65 years old and above,
respectively.

Sensitivity Analysis

Sensitivity analysis is the study of how levels of uncertainty in
the model input might be attributed to different sources of
uncertainty in the model output (Saltelli, 2002). Also, it is
frequently used to quantify the effect of each parameter on the
model outcomes (Hoops et al., 2016). One method for sensitivity
analysis is Latin Hypercube Sampling combined with Partial
Rank Correlation Coefficient (LHS/PRCC), which was used in
this study. It is a method used to examine the complete
parameter space of a model in the shortest possible amount of
computer simulations (Blower et al., 1991).

The PRCC values of each parameter were obtained using the
Latin Hypercube Sampling (LHS). In LHS, each model
parameter was assigned a uniform distribution and sampling was
done independently. A total of 10,000 simulations were
conducted, each with a different set of parameter values chosen
from a uniform distribution. To investigate how changes in the
parameter affect the model output, time points of interest are
identified. As a result, the PRCCs of the model output at specific
instances are calculated for each parameter. The model output
shows the effect of each parameter to the infectious class, I, with
16 time points representing the range of year considered in the
study. The PRCC values of each parameter are presented in
Figure 4.

0.8 4

0.6 |- 1

0.4 4

n 0.2 1

PRCC Values (I
LI\; (=]
|
;’
—_——
_
|

.
03 € FES

1 .
<

E 5

my b

s @ &
Parameters

Figure 4: PRCC values that depict the sensitivities of the model output

I with respect to the parameters. Parameters b, 84, 2, u, &, k, 1, and

d; have significant effect on the model output.

PRCC values range from —1 to +1, and parameters with PRCC
values less than —0.5 or higher than 0.5 indicate stronger
relationship with the model output (Taylor, 1990). Parameters
such as the birth rate (b), transmission rates of children and
working groups (1, 5,), and the high-risk-latent-to-infectious
conversion rate (k) exhibit high positive PRCC values. A one-
unit increase in any of these parameters leads to a corresponding
rise in the total number of infectious individuals in the
population. In contrast, parameters like the natural mortality rate
(), progression rate from high-risk latent to low-risk latent class
(), treatment rate (1), and TB-induced mortality (d) have high
negative PRCC values, indicating that increases in these
parameters cause a decrease in the number of infectious
individuals.

Parameter Identification

Parameter estimation enables the model to quantitatively reflect
the disease dynamics observed in a specific setting. In this study,
the model parameters were identified by calibrating the model
with the national TB incidence data reported by the Department
of Health from 2005 to 2020. No additional adjustment was
made to the dataset.

Fitting was performed by minimizing the sum of squared errors
between the observed annual TB incidence and the model-
predicted incidence, as implemented using the MATLAB
routine fininsearch. The model output matched to the observed
data was the annual number of individuals progressing from
high-risk latent TB (E) to infectious TB (I), calculated as the
product of the progression rate x and the high-risk latent
population size at each time point.

The parameters calibrated through fitting included the
transmission rates for children (f;) and working group (f;),
progression rate to active TB (), and treatment rate (). Bounds
for each parameter were set based on biologically plausible
ranges informed by both literature and national demographic
statistics. Initial guesses for the parameters were based on a
previous modeling study (Kim et al., 2018). Parameters not
fitted from data (e.g., transition rates m,, m, and natural death
rate u) were estimated from population statistics or obtained
from published prior TB modeling study (Kim et al., 2018).

For initial conditions, the susceptible population sizes for each
age group (51, S,, S3) were set to their respective demographics
as reported in the 2005 census data. From the study conducted
by Lara and Ocampo, it was determined that about 67% of the
Philippine population have latent TB infection (Lara & Ocampo,
2013). The percentage of population with high-risk latent TB
and low-risk latent TB were set to 9.5% and 57.5%, respectively.
The initial value of the Infectious () class was assigned based
on the first available incidence data point.

The estimates for §; and 3, are slightly higher compared to the
values estimated in previous TB modeling studies in the country
for all age groups (Kim et al., 2018; Villasin et al., 2017)
reflecting the higher transmission rates in the children and
working class. Progression rate from high-risk latent to
infectious class (k) is higher compared to the estimated value
reported in (Kim et al., 2018). This is attributed to the higher
estimates of the incidence of TB used in the current study. The
treatment rate is close to the reported value of 63% in 2018 for
the Philippines (AIDS Data Hub, 2019). Figure 5 illustrates the
fit of the calibrated model incidence output (black curve) to the
reported TB incidence data (red squares), while Table 1
summarizes the estimated and referenced parameters used in
simulations.
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Figure 5: The identified model (black curve) and TB incidence data
(red square). Generally, an increasing trend is evident in the
Philippines TB incidence.

Table 1: The estimated and data fitted parameter values used in simulations

Parameters Description Value Reference
b Annual birth rate 0.0389 Data fitted*
u Natural death rate 0.0225 Estimated
By Transmission rate of children group 12.9201 Data fitted**
By Transmission rate of working group 12.8587 Data fitted**
my Conversion rate from children to working group 0.0906 Data fitted*
m, Conversion rate from working to older adults 0.0046 Data fitted*
K Progression rate from high-risk latent to infectious class 0.0569 Data fitted**
Treatment rate 0.6590 Data fitted**
dr TB-induced mortality rate 0.0532 Estimated
p Probability of failed treatment 0.1180 Estimated
B Transmission rate of older adults 11.7345 (Kim et al., 2018)
a Progression rate from high-risk latent to low-risk latent class 0.2077 (Kim et al., 2018)

*Estimated from data on Philippine Population
**Estimated from data on TB Incidence

WHO’s END TB Strategy Goal

There have been various efforts exerted by different health
institutions to combat the problem of TB burden in the
Philippines. Despite these efforts, the incidence rate of TB in the
Philippines remains high (World Data Bank, 2020). The Sixty-
Seventh World Health Assembly endorsed the End TB Strategy
developed by WHO (World Health Organization, n.d.). The
organization set a target of an 80% decrease in TB incidence
globally by 2030 compared with the number of new TB cases
recorded in 2015, which then aims toward ending the TB
epidemic. The TB incidence in the Philippines in 2015 was
561,623, so the End TB Strategy goal is to reduce TB incidence
to at most 112,325 by 2030. So, to assess the feasibility of
reaching the End TB strategy goal of the WHO and determine
the best strategy to achieve this target, the researchers
considered three mitigating strategies currently implemented by
the health institutions of the Philippines. These are also the
strategies mentioned in one of the TB paper focused in the
Philippines (Kim et al., 2018).

The first strategy is the distancing strategy, which represents all
efforts to reduce close contact between susceptible individuals
and those with TB. In the model, this is implemented by

decreasing the value of the transmission rate (;), (5,), and (B5).

Note that in this paper, we can explore the effects of applying
the distancing strategy to different age groups. Another strategy
is the latent case finding intervention, which encompasses
efforts to prevent high-risk latent TB infections from

progressing to active disease. This includes chemoprophylaxis
treatment, screening of individuals who have high risk of getting
the disease, and other kinds of latent TB treatment. In the model,
this strategy was demonstrated by increasing («). Lastly, the
active case finding strategy refers to efforts that increase the
number of individuals who seek and receive TB treatment. This
was implemented by increasing (r) in the simulations. In the
study, several scenarios were considered in attempting to reach
the WHO’s End Strategy goal. It was assumed that the
improvement in the said strategies would be implemented in
2023, and at a constant rate until 2030. First, we varied a single
parameter to explore the effect of each strategy. Then, two
strategies were implemented by simultaneously varying two
parameter values. We also explored the effects of implementing
at least three strategies.

RESULTS

Using the obtained parameter and initial values, the model was
simulated over the time span 2005 to 2030. Based on the
simulation, TB incidence is projected to reach approximately
676,582, which is about 200,000 higher than the incidence in
2005. This increase implies that there is a need for a more
extensive planning and effort to address the TB burden problem
in the Philippines. In the next parts of this paper, different
strategies to mitigate the disease will be assessed by varying
different parameter values.
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Variation of a Single Parameter Value

Varying each of the parameters (f;), (82), (B3), («), and (r) by
10% — 30% will not result in the achievement of the End TB
strategy goal. Nonetheless, reducing (8;) and (f,) by 30%
would cause around 19% and 13% decrease respectively in the
number of TB incidence while increasing (r) by 30% would
result to a decrease of 20% compared to the 2030 projection
when no improvement in the current efforts is done. However,
when compared to the 2015 incidence data, an estimated
decrease of only 2% and 4% is observed when 30% decrease in
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(By) is set and 30% increase in r is implemented. Decreasing
(B3) by 10% — 30%, as shown in Figure 6c, resulted to almost
no change in the TB incidence. It is important to note that
varying the value of () has the capability to strongly decrease
the number of TB incidence in the Philippines at around 26%
compared to the 2030 projection and 10% compared to 2015
data. As reduction in all scenarios is not sufficient, multiple
control strategies were also explored.
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Figure 6: The estimated TB incidence when single parameter is varied. Decrease in the incidence is evident when B,, B,, a, and r are varied (6a, 6b,
6d, 6e). No significant change in the TB incidence when B; is varied up to 30% (6c).
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Simultaneous Variation of at Least Two Parameter Values

The parameter f; was no longer considered in subsequent
simulations as the previous section showed that changes in the
value of this parameter do not significantly affect the incidence
of TB in the country. Starting with a combination of two
strategies, the distancing strategy for the children group and the
working class were each paired with the other strategies (see
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Figure 7). For both cases, the distancing strategy together with
the latent case finding strategy achieved the lowest incidence by
2030 and resulted in a 28% and 23% lower incidences,
respectively, compared to the 2015 incidence.
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Figure 7: The estimated TB incidence when two parameters are simultaneously changed. Distancing strategy together with latent case finding strategy

achieved the lowest incidence by 2030 for both cases

Now, three parameter values were combined to examine their
overall effect on the TB incidence in the Philippines. Here, ;
and £, are lowered by 30% while a and r are increased by
30% (see Figure 8). The TB incidence in 2030 will be
significantly reduced for each combination. However, the

combinations for which a is present displayed the lowest
incidences by 2030.
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Figure 8: Simultaneously changing three parameter values. Combinations for which a is present displayed the lowest incidences by 2030.

Simulations involving four parameter values were also explored
(see Figure 9). Even with 30% decrease in f; and §, together

respectively, must be fulfilled to achieve the goal by 2030.
Nonetheless, improving each strategy by 30% will lower the
incidence by almost 53% compared to the incidence in 2015.

with a 30% increase in a and 7, the projected incidence by 2030
is still far from the WHO goal. In fact, at least 50% decrease in
B, and B,, together with 50% and 30% increase on « and r
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Figure 9: The estimated TB incidence when all parameters are changed simultaneously. At least 50% decrease in 8, and f8,, together with 50% and

30% increase on a and r respectively, must be fulfilled to achieve the goal by 2030.
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DISCUSSION

Variation of a Single Parameter Value

Varying (1), (B2), (@), and (r) each by 10% — 30% resulted
in significant but insufficient reductions in infections, implying
that minimal efforts to reduce transmission in people aged 0 —
14 or 15 — 64 years old or treating more individuals infected
with TB alone will not be enough to reduce the number of TB
incidence by 80% in 2030. However, these control strategies are
significant in curtailing TB in the Philippines.

Decreasing 53 by 10% — 30% resulted in almost no change in
the incidence of TB. This complements the result of the
sensitivity analysis, which showed that 5 has no significant
effect on the model output. Consequently, reducing TB
transmission in people aged 65 years and older will not have a
large impact on lowering overall TB incidence in the model.
However, it is still necessary to pay attention to lowering
transmission in this age group. This is because once people in
this group become infected with MTB, treatment can be
complicated due to current health complications, immune
senescence, and other health factors in this age group. In
addition, older people tend to show unusual symptoms of TB,
leading to delayed diagnosis and treatment resulting in higher
morbidity and mortality (Thomas & Rajagopalan, 2001).

Simultaneous Variation of at Least Two Parameter Values
The impact of the latent case finding strategy that was explored
by varying @ was dominant compared to the active case finding
strategy in terms of reducing the TB incidence. The significance
of this strategy is still evident in the scenario where three control
strategies are improved. The efforts to assist high-risk latent TB
individuals must then be improved to effectively mitigate TB in
the country. The results displayed a large change in 3y, 3,, «,
and r is required to attain the goal by 2030. This implies that
intensive improvement of all efforts related to distancing
strategy for children and the working group, latent case finding
intervention, and active case finding strategy are necessary. This
will be challenging in a situation where there are limited
resources. However, enhancing all the mentioned strategies by
30% will result in significant reductions in the incidence of
tuberculosis in the country.

Comparison with Similar Studies Across the Asia-Pacific
Region

While the model developed in this study introduces age-
structuring in TB transmission, it is important to acknowledge
that the national TB incidence datasets used were highly
aggregated and not age-specific. As a result, direct fitting and
validation of each age group in the model is limited by data
availability. To address this and to substantiate the conclusions
drawn from the model, we compared our simulation results with
findings from recent mathematical modeling studies in high-
burden and neighboring regions.

Notably, our model’s identification of the working-age group as
one of the primary drivers of transmission aligns with recent
findings from the Republic of Korea. Seong et al.
(2025) demonstrated that targeting Latent TB Infection (LTBI)
treatment specifically in adults aged 35-64 resulted in the most
effective reduction of disease burden, reinforcing our finding
that interventions focused on the economically active population
result in significant benefits. This also strengthens the claim of
the importance of latent case finding strategy as suggested in the
current study. Similarly, in the context of Indonesia, Fatmawati
et al. (2020) utilized a discrete age-structured model to derive
optimal control strategies, highlighting that distinct
interventions for child and adult populations are necessary to
maximize the reduction of latent and active cases. This supports
our modelling framework, particularly the stratification of the
susceptible class into these age groups.

Comparisons with studies from China reveal both consistencies
and context-specific differences. Xue et al. (2022) found that
improved vaccination and diagnostic strategies were most
effective when targeting young adults (2024 years) and the
elderly (over 65 years). While this partially aligns with our
emphasis on young/working-age adults, our results suggest a
lower relative contribution from the elderly compared to the
working-age group in the Philippines, whereas Xue et al.
emphasize the elderly as a critical target in China’s aging
demographic.

CONCLUSION AND RECOMMENDATIONS

The results of this study underscore the significant impact of age
on the dynamics of TB transmission in the Philippines. Certain
age ranges, such as children and working groups, are
disproportionately prone to TB infection due to factors including
frequency of social contact. To reflect these differences, age
compartments were integrated into a mathematical model
adapted from the established work of Kim et al. (2018),
calibrated using Philippine national TB data.

Sensitivity analyses revealed that TB incidence in the
Philippines is highly sensitive to transmission rates among
children and the working-age group, whereas transmission
among older adults contributes relatively less. This age-stratified
approach demonstrates that uniform intervention strategies may
neglect key population dynamics, and that targeted efforts for
children and working group yield greater impact in reducing TB
transmission.

Notably, model-based feasibility assessments of the WHO’s End
TB Strategy target, an 80% incidence reduction by 2030,
showed that focusing solely on singular parameter
improvements may be insufficient to reach the goal. However,
substantial reductions were observed when increasing the
progression rate from high-risk latent to low-risk latent class (@),
highlighting the necessity of intensified identification and
management of latent TB cases most likely to progress to active
disease. Integrated strategies that combine latent TB
identification and treatment with improved social distancing
efforts in child and working group should be prioritized to
reduce TB incidence in the country.

A principal limitation of this study lies in the dependence of
numerical simulations on reported TB incidence data, which are
subject to under-reporting and case notification inaccuracies in
the Philippines (Garfin et al., 2013; Parpieva et al., 2021).
Recent surveys indicate the true prevalence of TB is
approximately three times higher than the number of notified
cases, with even larger discrepancies observed in pediatric and
adolescent age groups (Seddon et al., 2018). Such
underestimation may result in systematic bias in parameter
estimation. Consequently, the simulated projections may
underestimate the overall TB burden. While sensitivity analyses
were used to evaluate the robustness of model outputs to
parameter variations, it is important to interpret the results with
caution because inaccuracies in TB case notifications may affect
the model’s ability to produce accurate projections. Enhanced
surveillance data and improved uncertainty measurements are
required for future modeling works to better inform health
policy.

Biological system modeling is a powerful tool for public health
research, particularly in incorporating complex epidemiological
concepts and enabling assessment of different interventions.
However, several limitations exist specific to modeling TB in
the Philippines. The current modeling framework does not
account for migration, HIV-TB co-infection or socioeconomic
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determinants that may impact TB transmission dynamics.
Additionally, the assumption of population homogeneity within
age groups and states may ignore important individual-level
patterns. Acknowledging these limitations is essential for
contextualizing the results from the study.

For future studies, we recommend investigating TB transmission
in the Philippines using models with age stratification in the
high-risk latent and infectious classes, or in combinations of
different compartments, to further analyze how age affects TB
transmission. Future researchers may also explore using
different (or more) age groups in studying the transmission of
TB in the Philippines.
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